Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 5, 6007-6017
https://doi.org/10.28919/jmcs/6225
ISSN: 1927-5307

THE MONOPHONIC GLOBAL DOMINATION NUMBER OF A GRAPH

V. SELVI ${ }^{\dagger}{ }^{\dagger, *}$, V. SUJIN FLOWER
Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 629 004, India
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India
Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. A set $M \subseteq V$ is said to be a monophonic global dominating set of G if M is both a monophonic set and a global dominating set of G. The minimum cardinality of a monophonic global dominating set of G is the monophonic global domination number of G and is denoted by $\bar{\gamma}_{m}(G)$. A monophonic global dominating set of cardinality $\bar{\gamma}_{m}(G)$ is called a $\bar{\gamma}_{m}$-set of G. The monophonic global domination number of certain classes of graphs are determined. It is proved that $2 \leq \bar{\gamma}_{m}(G) \leq \bar{\gamma}_{g}(G) \leq n$, where $\bar{\gamma}_{g}(G)$ is a geodetic global domination number of a G. It is shown that for every pair of positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $\bar{\gamma}_{m}(G)=a$ and $\bar{\gamma}_{g}(G)=b$.

Keywords: monophonic global domination number; global domination number; monophonic number; domination number.

2010 AMS Subject Classification: 05C38, 05C69, 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by m and n respectively. For basic graph theoretic terminology, we refer to [2]. Two vertices u and v are said to be adjacent if $u v$ is

[^0]an edge of G. If $u v \in E(G)$, we say that u is a neighbor of v and denote by $N(v)$, the set of neighbors of v. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=|N(v)|$. A vertex v is said to be a universal vertex of G if $\operatorname{deg}(v)=n-1$. The subgraph induced by a set S of vertices of a graph G is denoted by $G[S]$ with $V(G[S])=S$ and $E(G[S])=\{u v \in E(G): u, v \in S\}$. A vertex v is called an extreme vertex if $G[N(v)]$ is complete.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A distance-hereditary graph is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, the closed interval $I[u, v]$ consists of u and v together with all vertices lying in a $u-v$ geodesic. If u and v are adjacent, then $I[u, v]=\{u, v\}$. For a set S of vertices, let $I[S]=\cup_{u, v \in S} I[u, v]$. Then certainly $S \subseteq I[S]$. A set $S \subseteq V(G)$ is called a geodetic set of G if $I[S]=V$. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is a geodetic basis or a g-set of G. The geodetic number of a graph was studied in [1,3,5,20-23,26]. A chord of a path P is an edge which connects two non-adjacent vertices of P. An $u-v$ path is called a monophonic path if it is a chordless path. For two vertices u and v, the closed interval $J[u, v]$ consists of all the vertices lying in a $u-v$ monophonic path including the vertices u and v. If u and v are adjacent, then $J[u, v]=\{u, v\}$. For a set M of vertices, let $J[M]=\cup_{u, v \in M} J[u, v]$. Then certainly $M \subseteq J[M]$. A set $M \subseteq V(G)$ is called a monophonic set of G if $J[M]=V$. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is called a m-set of G. The monophonic number of a graph was studied in [6,819,28].

A subset $D \subseteq V(G)$ is called a dominating set if every vertex $v \in V(G) \backslash D$ is adjacent to a vertex $u \in D$. The domination number, $\gamma(G)$, of a graph G denotes the minimum cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence often called as a γ-set of G. The domination concept was studied in [7]. A subset $D \subseteq V$ is called a global dominating set in G if D is a dominating set of both G and \bar{G}. The global domination number $\bar{\gamma}(G)$ is the minimum cardinality of a minimal global dominating set in G. The concept of global
domination in graph was introduced in [25,29,30]. A set $S \subseteq V$ is said to be a geodetic global dominating set of G if S is both a geodetic set and a global dominating set of G. The minimum cardinality of a geodetic global dominating set of G is the geodetic global domination number of G and is denoted by $\bar{\gamma}_{g}(G)$. A geodetic global dominating set of cardinality $\bar{\gamma}_{g}(G)$ is called a $\bar{\gamma}_{g}$-set of G. The concept of geodetic global domination in graph was studied in $[4,24]$. The domination concepts is used in networks. The geodetic and monophonic concepts are used in social networks. By applying the monophonic (geodetic) global domination concepts, there is a effectiveness in the networks. Throughout the following G denotes a connected graph at least two vertices. The following theorem is used in the sequel.

Theorem 1.1. [4] Each extreme vertex of a connected graph G belongs to every geodetic global dominating set of G.

2. The Monophonic Global Domination Number of a Graph

Definition 2.1. A set $M \subseteq V$ is said to be a monophonic global dominating set of G if M is both a monophonic set and a global dominating set of G. The minimum cardinality of a monophonic global dominating set of G is the monophonic global domination number of G and is denoted by $\bar{\gamma}_{m}(G)$. A monophonic global dominating set of cardinality $\bar{\gamma}_{m}(G)$ is called a $\bar{\gamma}_{m}$-set of G.

Example 2.2. For the graph G given in Figure 2.1, $M=\left\{v_{1}, v_{2}, v_{5}\right\}$ is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=3$.

Remark 2.3. For the graph G given in Figure 2.1, $M_{1}=\left\{v_{2}, v_{5}\right\}$ is a m-set as well as a γ_{m}-set of G. Therefore the monophonic global domination number and the monophonic number of a connected graph are different.

Observation 2.4. (i)For a connected graph of order $n \geq 2,2 \leq \max \{\bar{\gamma}(G), m(G)\} \leq \bar{\gamma}_{m}(G) \leq n$. (ii)Each extreme vertex of a connected graph belong to every monophonic global dominating set of G.
(iii)Each universal vertex of a connected graph belong to every monophonic global dominating set of G.

In the following we determine the monophonic global dominating number of some standard graphs.

Theorem 2.5. For the complete graph $G=K_{n}(n \geq 2), \bar{\gamma}_{m}(G)=n$.

Proof. This follows from Observation 2.4(ii).

Theorem 2.6. For the star $G=K_{1, n-1}(n \geq 3), \bar{\gamma}_{m}(G)=n$.

Proof. This follows from Observation 2.4(ii) and (iii).

Theorem 2.7. For the the graph $G=K_{n}-e(n \geq 4), \bar{\gamma}_{m}(G)=4$.

Proof. Let $e=u v$. Then u and v are universal vertices of G and $V(G)-\{u, v\}$ is the set of extreme vertices of G. By Observations 2.4(ii) and (iii), $\bar{\gamma}_{m}(G) \geq n$. Since $V(G)$ is a monophonic global dominating set of G, we have $\bar{\gamma}_{m}(G)=n$.

Theorem 2.8. For the path $G=P_{n}(n \geq 2)$,
$\bar{\gamma}_{m}(G)= \begin{cases}1 & \text { if } n \in\{2,3\} \\ \left\lceil\frac{n+2}{3}\right\rceil & \text { if } \mathrm{n} \geq 4 .\end{cases}$
Proof. If $n=2$ or 3 , then the result follows from Theorem 2.5 and 2.6. So, let $n \geq 4$. Consider three cases.

Case(a). $n \equiv 0(\bmod 3)$. Let $M_{1}=\left\{v_{1}, v_{4}, \ldots, v_{n-2}, v_{n}\right\}$. Then M_{1} is a minimum monophonic dominating set of G. We show that M_{1} is a dominating set of \bar{G}. Let $u_{i}, v_{j} \in M_{1}$ be any two adjacent vertices in G. Then $\left\{v_{i}, v_{j}\right\}$ dominates \bar{G}. Since $v_{i}, v_{j} \in M_{1}, M_{1}$ is a dominating set of \bar{G}. By Observation 2.4(ii), M_{1} is $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=\left\lceil\frac{n+2}{3}\right\rceil$.
Case(b). $n \equiv 1(\bmod 3)$. Let $M_{2}=\left\{v_{1}, v_{4}, \ldots, v_{n-3}, v_{n}\right\}$. Then by similar argument as in case(a), we can prove that $\bar{\gamma}_{m}(G)=\left\lceil\frac{n+2}{3}\right\rceil$.
$\operatorname{Case}(\mathbf{c}) . n \equiv 2(\bmod 3)$. Let $M_{3}=\left\{v_{1}, v_{4}, \ldots, v_{n-1}, v_{n}\right\}$. Then by similar argument as in case(a), we can prove that $\bar{\gamma}_{m}(G)=\left\lceil\frac{n+2}{3}\right\rceil$.

Theorem 2.9. For the cycle $G=C_{n}(n \geq 3)$,
$\bar{\gamma}_{m}(G)=\left\{\begin{array}{lll}3 & \text { if } & n \in\{3,4,5\} \\ \left\lceil\frac{n}{3}\right\rceil & \text { if } & n \geq 6 .\end{array}\right.$
Proof. Let C_{n} be $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. If $n=3$, then the result follows from Theorem 2.5.
If $n=4$, then $M_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=3$.
If $n=5$, then $M_{2}=\left\{v_{1}, v_{3}, v_{4}\right\}$ is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=3$.
For $n \geq 6$, we consider three cases.
Case(a). $n \equiv 0(\bmod 3)$. Let $M_{1}=\left\{v_{1}, v_{4}, \ldots, v_{n-2}, v_{n}\right\}$. Then $J\left[M_{1}\right]=V(G)$ and so M_{1} is a monophonic set of G. Since every element of $V(G)-M_{1}$ is dominated by an element of M_{1}, M_{1} is a dominating set of G. Since G has no chords, any two vertices of M_{1} dominates \bar{G} and so M_{1} is a global domination set of G. Hence M_{1} is a monophonic global set of G and so $\bar{\gamma}_{m}(G) \leq\left\lceil\frac{n}{3}\right\rceil$. We prove that $\bar{\gamma}_{m}(G)=\left\lceil\frac{n}{3}\right\rceil$. On the contrary suppose that $\bar{\gamma}_{m}(G)<\left\lceil\frac{n}{3}\right\rceil$. Then there exists a $\bar{\gamma}_{m^{\prime}}$-set such that $\left|M^{\prime}\right|<\left\lceil\frac{n}{3}\right\rceil$. Since $n \geq 6$, there exists at least one $u \in M^{\prime}$ such that $V(G)-M^{\prime}$ such that u is not dominated by any element of M^{\prime}. Therefore M^{\prime} is not a global domination set of G, which is a contradiction. Therefore M_{1} is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G) \leq\left\lceil\frac{n}{3}\right\rceil$.
Case(b). $n \equiv 1(\bmod 3)$. Let $M_{2}=\left\{v_{1}, v_{4}, \ldots, v_{n-3}, v_{n}\right\}$. Then by similar argument as in case(a), M_{2} is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=\left\lceil\frac{n}{3}\right\rceil$.
$\operatorname{Case}(\mathbf{c}) . n \equiv 2(\bmod 3)$. Let $M_{3}=\left\{v_{1}, v_{4}, \ldots, v_{n-4}, v_{n-1}\right\}$. Then by similar argument as in case(a), M_{3} is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=\left\lceil\frac{n}{3}\right\rceil$.

Theorem 2.10. For the wheel $G=K_{1}+C_{n-1}(n \geq 4)$,
$\bar{\gamma}_{m}(G)=\left\{\begin{array}{ccc}4 & \text { if } & n \in\{4,5\} \\ 3 & \text { if } & n \geq 6\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=\{x\}$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. If $n=4$, then $G=K_{4}$. Hence the result follows from Theorem 2.5.

If $n=5$, then $M=\left\{x, v_{1}, v_{2}, v_{3}\right\}$ is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=4$.

So, let $n \geq 6$. By Observation 2.4(iii), x belongs to every monophonic global dominating set of G. Since $x v_{i} \in E(G)$ for all $i,(1 \leq i \leq n-1), \bar{\gamma}_{m}(G) \geq 3$. Let $M_{1}=\left\{x, v_{1}, v_{3}\right\}$. Then M_{1} is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=3$.

Theorem 2.11. For the fan graph $G=K_{1}+P_{n-1}(n \geq 2)$,
$\bar{\gamma}_{m}(G)= \begin{cases}3 & \text { if } n=2 \text { or } n \geq 4 \\ 4 & \text { if } n=3 .\end{cases}$
Proof. Let $V\left(K_{1}\right)=\{x\}$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. If $n=2$, then $G=K_{3}$. Hence the result follows from Theorem 2.7.
If $n=3$, then $G=K_{4}-\{e\}$. Hence the result follows from Theorem 2.5. So, let $n \geq 5$. By Observation 2.4(ii) and (iii), $M=\left\{x, v_{1}, v_{n-1}\right\}$ is a subset of every monophonic global dominating set of G and so $\bar{\gamma}_{m}(G) \geq 3$. Since M is a monophonic global dominating set of G, we have $\bar{\gamma}_{m}(G)=3$.

Theorem 2.12. For the complete bipartite $G=K_{r, s}(1 \leq r \leq s)$,
$\bar{\gamma}_{m}(G)=\left\{\begin{array}{lll}s+1 & \text { if } & 2 \leq r \leq s \\ r+1 & \text { if } & r \leq 3 \\ 4 & \text { if } & r \geq 4 .\end{array}\right.$
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the bipartite sets of G. If $r=1, s \geq$ 1 , then the result follows from Theorem 2.6. So, let $r \geq 2$. Let M be a monophonic global dominating set of G. Then M contains at least one vertex from X and at least one vertex from Y. Let $2 \leq r \leq 3$. Then $M=X$ is a m-set of G but not a $\bar{\gamma}$-set of G and so $\bar{\gamma}_{m}(G) \geq r+1$. Let $M_{1}=$ $X \cup\left\{y_{1}\right\}$. Then M_{1} is a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=r+1$. Let $r \geq 4$. Then $M_{2}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is a m-set and a dominating set of G and so $\bar{\gamma}_{m}(G) \geq 4$. Since M_{2} is a $\bar{\gamma}$-set of G, M_{2} is also a $\bar{\gamma}_{m}$-set of G so that $\bar{\gamma}_{m}(G)=4$.

Theorem 2.13. For the helm graph $G=H_{r}, \bar{\gamma}_{m}(G)=r+1$.

Proof. Let x be the central vertex of G and Z be the set of r end vertices of G. By Observation 2.4(ii), Z is a subset of every monophonic global dominating set of G. Since x is not dominated by any vertex of Z, Z is not a monophonic global dominating set of G and so $\bar{\gamma}_{m}(G) \geq r+1$.

Let $Z^{\prime}=Z \cup\{x\}$. Then $J\left[Z^{\prime}\right]=V(G)$ and every element of $V(G)-Z^{\prime}$ is dominated by at least one element of Z^{\prime}. Therefore Z^{\prime} is a monophonic global dominating set of G so that $\bar{\gamma}_{m}(G)=r+1$.

Theorem 2.14. For the banana tree graph $G=B_{r, s}, \bar{\gamma}_{m}(G)=r+1$.

Proof. Let x be the central vertex of G and Z be the set of end vertices of G. By Observation 2.4(ii), Z is a subset of every monophonic global dominating set of G. Since x is not dominated by any vertex of Z, Z is not a monophonic global dominating set of G and so $\gamma_{m}(G) \geq r+1$. Let $Z^{\prime}=Z \cup\{x\}$. Then $J\left[Z^{\prime}\right]=V(G)$ and every element of $V(G)-Z^{\prime}$ is dominated by at least one element of Z^{\prime}. Therefore Z^{\prime} is a monophonic global dominating set of G so that $\bar{\gamma}_{m}(G)=r+1$.

3. The Monophonic Global Domination Number and the Geodetic global Domination of a Graph

Theorem 3.1. Every geodetic global dominating set of G is a monophonic global dominating set of G.

Proof. Let S be a geodetic global dominating set of G. Then S is a geodetic set and a global dominating set of G. Since every u-v geodesic is a $u-v$ monophonic path, S is a monophonic set of G. Hence it follows that S is a global dominating set of G.

Let G be a connected graph of order n. Then $2 \leq \bar{\gamma}_{m}(G) \leq \bar{\gamma}_{g}(G) \leq n$.
Proof. This follows from Theorem 2.8.

Theorem 3.2. Let G be a distance-hereditary graph of order n. Then $\bar{\gamma}_{g}(G)=\bar{\gamma}_{m}(G)$.
Proof. In a distance-hereditary graph, every $u-v$ monophonic path is a $u-v$ geodesic. Hence it follows that every monophonic global dominating set of G is a geodetic global dominating set of G. Therefore $\bar{\gamma}_{g}(G) \leq \bar{\gamma}_{m}(G)$. Hence the result follows from Corollary 3.2.

In the view of Corollary 3.2, we have the following realization result.

Theorem 3.3. For every pair of positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $\bar{\gamma}_{m}(G)=a$ and $\bar{\gamma}_{g}(G)=b$.

Proof. For $a=b$, let $G=K_{1, a-1}$. Then the result follows from Theorem 2.6. So, let $2 \leq a<b$. Let $P: x, y, z$ be a path on three vertices. Let $P_{i}: u_{i}, v_{i}(1 \leq i \leq b-a+1)$ be a copy of path on two vertices. Let H be a graph obtained from P and $P_{i}(1 \leq i \leq b-a+1)$ by introducing the edges $x u_{i}$ and $z v_{i}(1 \leq i \leq b-a+1)$. Let G be the graph obtained from H by adding new vertices $z_{1}, z_{2}, \ldots, z_{a-2}$ and introducing the edges $z z_{i}(1 \leq i \leq a-2)$. The graph G is shown in Figure 3.1.

First we prove that $\bar{\gamma}_{m}(G)=a$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{a-2}\right\}$ be the set of all end vertices of G. By Observation 2.4(ii), Z is a subset of every monophonic global dominating set of G and so $\bar{\gamma}_{m}(G) \geq a-2$. Since $J[Z] \neq V, Z$ is not a monophonic global dominating set of G and so $\bar{\gamma}_{m}(G) \geq a-1$. It is also noted that $Z \cup\{u\}$, where $u \notin Z$ is not a global dominating set of G and so $\bar{\gamma}_{m}(G) \geq a$. Let $M=Z \cup\{x, z\}$. Then M is a $M=Z \cup\{x, z\}$. Then M is a monophonic global dominating set of G so that $\bar{\gamma}_{m}(G)=a$.

Next we prove that $\bar{\gamma}_{g}(G)=b$. By Theorem $1.1, Z$ is a subset of every geodetic global dominating set of G. Let $H_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq b-a+1)$. It is noted that every minimum global dominating set of G contains exactly one vertex from each $H_{i}(1 \leq i \leq b-a+1)$ and either x or y and so $\bar{\gamma}_{g}(G) \geq a-2+b-a+1+1=b$. Let $S=Z \cup\left\{x, v_{1}, v_{2}, \ldots, v_{b-a+1}\right\}$. Then S is a geodetic global dominating set of G so that $\bar{\gamma}_{g}(G)=b$.

Figure 3.1

4. Conclusion

In this article, we introduced the concept of the monophonic global domination number of a graph and studied some of its general properties. It can be further investigated to find out under which conditions the lower bound and the upper bound of the monophonic global domination number are sharp.

5. ACKNowledgment

We are thankful to the referees form their constructive and detailed comments and suggestions which improved the paper overall.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] H.A. Ahangar, S. Kosari, S.M. Sheikholeslami, and L. Volkmann, Graphs with large geodetic number, Filomat, 29(6) (2015), 1361-1368.
[2] F. Buckley and F. Harary, Distance in Graph, Addition-Wesly-Wood City, CA (1990).
[3] S. Beulah Samli, J. John and S. Robinson Chellathurai, The double geo chromatic numberof a graph, Bull. Int. Math. Virtual Inst. 11(1) (2021), 25-38.
[4] S. R. Chellathurai and L. Xaviour, Geodetic global domination in graph, Int. J. Math. Arch. 9(4) (2018), 29-36,
[5] M.C. Dourado, F. Protti, D. Rautenbach, and J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Math. 310 (2010), 832-837.
[6] M.C. Dourado, F. Protti, and J.L. Szwarcfiter, Algorithmic aspects of monophonic convexity, Electron. Notes Discrete Math. 30 (2008), 177-182.
[7] Haynes. T. W, Hedetniemi. S. T and Slater. P. J, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[8] J. John and S. Panchali, The upper monophonic number of a graph, Int. J. Math. Combin. 4 (2010), 46-52.
[9] J. John and P. Arul Paul Sudhahar, The forcing edge monophonic number of a graph, SCIENTIA Ser. A: Math. Sci. 23 (2012), 87-98
[10] J. John and S. Panchali, The forcing monophonic number of a graph, Int. J. Math. Arch. 3(3) (2012), 935-938.
[11] J. John and P. Arul Paul Sudhahar, The monophonic domination number of a graph, Proc. Int. Conf. Math. Bus. manage. 1 (2012), 142-145.
[12] J. John and K. Uma Samundesvari, The edge-to-vertex monophonic number of a graph, Int. J. Math. Arch. 3(2) (2012), 722-728.
[13] J. John and S. Panchali, The forcing monophonic number of a graph, Int. J. Math. Arch. 3(3) (2012), 935-938.
[14] J. John, P. Arul Paul Sudhahar, The upper connected monophonic number and forcing connected monophonic number of a graph, Int. J. Math. Trends Technol. 3 (2012), 29-32.
[15] J. John, P. Arul Paul Sudhahar, A. Vijayan, The connected monophonic number of a graph, Int. J. Combin. Graph Theory Appl. 5(1) (2012), 83-90.
[16] J. John and K. Uma Samundeswari, The forcing edge fixing edge-to-vertex monophonic number of a graph, Discrete Math. Algorithms Appl. 5(4) (2013), 1-10.
[17] J. John and K. Uma Samundeswari, The edge fixing edge-to-vertex monophonic number of a graph, Appl. Math. E-Notes. 15 (2015), 261-275.
[18] J. John and K. Uma Samundeswari, Total and forcing total edge-to-vertex monophonic numbers of graph, J. Comb. Optim. 34 (2017), 1-14.
[19] J. John, P. Arul Paul Sudhahar and D. Stalin, On the (M,D) number of a graph, Proyecciones J. Math. 38(2) (2019), 255-266.
[20] J. John and D. Stalin, Edge geodetic self decomposition in graphs, Discrete Math. Algorithms Appl. 12(5) (2020), 2050064, 7 pages.
[21] J. John and D. Stalin, The edge geodetic self decomposition number of a graph, RAIRO Oper. Res. 55 (2021), S1935-S1947.
[22] J. John and D. Stalin, Distinct edge geodetic decomposition in graphs, Commun. Combin. Optim. 6(2) (2021), 185-196.
[23] J. John, The forcing monophonic and forcing geodetic numbers of a graph, Indonesian J. Combin. 4(2) (2020), 114-125.
[24] X. Lenin Xaviour and S. Robinson Chellathurai, On the upper geodetic global domination number of a graph, Proyecciones J. Math. 39(6) (2020), 1627-1646.
[25] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989), 377-385.
[26] A.P. Santhakumaran and J. John, On the forcing geodetic and forcing Steiner numbers of a graph, Discuss. Math. Graph Theory. 31 (2011), 611-624.
[27] V. Selvi and V. Sujin Flower, On the monophonic Global Domination Number of a Graph, (Communicated).
[28] E.M. Paluga and S.R. Canoy, Jr, Monophonic numbers of the join and composition of connected graphs, Discrete Math. 307 (2007), 1146-1154.
[29] S.K.Vaidya and R. M. Pandit, Some new results on global dominating sets, ISRN Discrete Math. 2012 (2012), Article ID 852129, 6 pages.
[30] S.K. Vaidya and R. M. Pandit, Some results on global dominating sets, Proyecciones J. Math. 32(3) (2013), 235-244.

[^0]: *Corresponding author
 E-mail address: selvi.maths1983@gmail.com
 ${ }^{\dagger}$ Research Scholar, Register Number: 20123042092008
 Received June 05, 2021

